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Abstract

Feedout  means the transfer of mass perturbations from the rear to the front

surface of a driven target. When a planar shock wave breaks out at a rippled rear surface

of the target, a lateral pressure gradient drives sonic waves in a rippled rarefaction wave

propagating back to the front surface. This process redistributes mass in the volume of

the target, forming the feedout-generated seed for ablative Rayleigh-Taylor (RT)

instability. We report the first direct experimental observation of areal mass oscillation

associated with feedout, followed by the onset of exponential RT growth.

PACS numbers: 52.57.Fg, 52.70.La, 47.20.-k
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One of the sources of the initial mass non-uniformity for the Rayleigh-Taylor

(RT) perturbation growth in laser fusion targets is the roughness of the inner surface of

the target [1-2]. The process that transfers mass perturbation from the inner to the outer

surface of the target, where the RT instability develops, is called feedout. In planar

geometry, the RT growth begins after a planar shock wave initiated at the smooth front

surface of the target breaks out at its rippled rear surface, and a rippled rarefaction wave

reflected from it reaches the front surface. The shock-rarefaction transit time is shorter for

the thinner parts of the target, which start accelerating earlier. If the wavelength of the

rear-surface ripples λ  is sufficiently long compared to the shock-compressed target

thickness sL  ( sLπλ 2>> , see Ref. 3), then the thinner parts of the target also experience a

higher acceleration under the same driving pressure because of their lower areal mass. As

a result, these thinner parts evolve into bubbles, propagating ahead and dumping more of

their mass into the spikes that trail behind, as demonstrated in a theoretical work [4] and

then observed experimentally [5].

What if the perturbation wavelength is not that long? Then, as explained in [3],

lateral mass redistribution in a reflected rippled rarefaction wave cannot be neglected.

When a shock wave first breaks out at the valleys of the rippled rear surface, expansion

and decompression start from there, whereas the pressure in the shock wave still

propagating towards the peaks remains at the constant post-shock value. The resulting

lateral pressure gradient starts driving mass from peaks to valleys, decreasing the

pressure near the peaks and increasing it near the valleys, at some point overshooting the

pressure equilibrium and building up a reversed pressure gradient. These sonic
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oscillations of areal mass in a rippled rarefaction wave have been first described in Ref.

6.

It is informative to compare oscillations of areal mass in a shock wave (due to the

ripples at the front surface of the target), and in a rarefaction wave (due to the ripples at

the rear surface of the target), as in the experiments [8, 9] and [2], respectively. Figure 1

presents the comparison as given by analytical small-amplitude theory applied to a planar

layer of ideal gas with 3/5=γ , rippled from either front or rear side [3, 10, 11]. Here the

areal mass variation amplitude δm is expressed in units 00aρ  (where 0ρ is the post-shock

density, 0a is the initial ripple amplitude), λπ /2=k  is the ripple wave number, and sa  is

the post-shock speed of sound. The origin of time t = 0 for the shock  curves

corresponds to the instant when a constant intensity shock wave is launched at the rippled

surface of the target, and for the rarefaction  curve - to the shock breakout at the rippled

rear surface of the target. The shock  curves account for contributions to the mass

variation inside the target, from the rippled shock front and the non-uniform post-shock

flow. These curves do not show the contribution from the rippled front surface, or

ablation front. The no ablation  curve is plotted using the boundary condition that

assumes the rippled front surface to be a material interface, where a constant pressure is

maintained. The curve with ablation  treats the front surface as an ablation front, where

the Sanz-Piriz boundary conditions are satisfied [9, 11]; our example refers to a DT target

with a front ripple wavelength 30 µm and ablation-front-to-blowoff-plasma density ratio

8.95, all other parameters being the same as in [10]. We see that lateral variation of areal

mass is much more pronounced in a rippled rarefaction wave than in a rippled shock

wave. In particular, phase reversal of areal mass - which means that the initially thinner
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and thicker parts of the target become more and less massive, respectively — cannot

happen in a rippled shock wave. The theory, however, predicts it to occur repeatedly in a

rippled rarefaction wave, with first mass perturbation phase reversal occurring shortly

after the shock breakout, see Fig. 1. Equations (18), (23) of [3] yield an estimate for the

time interval between the shock breakout and the first phase reversal:
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where R is the shock compression ratio, 0L is the pre-shock target thickness, st  is the

shock transit time. Parameters γ and R enter (1) separately, as the ideal gas equation of

state might only be applicable to the target material when it expands after the shock

passage [12]. The γ-dependent numerical coefficient in (1) is close to unity; for strong

shocks, 4  to5.1=R , the R-dependent factor is ≅  2. In our estimates below, we assume

for multi-Mbar shocks 3/5=γ , R = 4.

After the rippled rarefaction wave breaks out at the front surface, the target starts

accelerating, which triggers the RT growth. It begins at the thinner parts of the target,

where the rippled leading edge arrives first, and continues with the initial perturbation

phase, further decreasing the areal mass in the initially thinner parts. When the long-

wavelength condition is not satisfied, the rarefaction transit time exceeds 1t , and this

growth has to compete against the lateral mass redistribution in a rippled rarefaction

wave: the initially thinner parts become more massive. In our experimental conditions,

the leading edge of the rippled rarefaction wave first arrives to the front surface where the

target was initially thinner. This triggers a RT perturbation growth in phase with the

initial mass distribution, transferring the mass from initially thinner to initially thicker
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parts of the target. The RT growth eventually prevails over the rippled rarefaction wave

effects, and the mass variation amplitude reverses phase again, after which δm continues

to increase.

Some of the effects discussed here have been detected in experiments and

simulations of Ref. 2, where a hohlraum drove an 85 µm thick Al target rippled at the

rear surface ( 50=λ  µm). For a high-intensity 2.2 ns long hohlraum pulse ([2], Fig. 7),

the first phase reversal was observed [for 2=st  ns, Eq. (1) gives 46.01 =t  ns, close to the

observed and simulated values], and the second one was predicted by the LASNEX

simulation, but not observed. For a low-intensity 4.5 ns long hohlraum pulse ([2], Fig. 9),

the LASNEX simulation again predicted two phase reversals [for 5.2=st  ns, we find

58.01 =t  ns, again close to the simulated value] and some growth with initial phase; only

the latter was actually observed.

We report here the first direct observation of the whole perturbation evolution

caused by feedout: a shock breakout at the rippled rear surface, two phase reversals, and a

subsequent RT growth. Our experiments were performed with the Nike KrF laser [13]

( Lλ  = 248 nm). The 4 ns long laser pulse (~1400 J in 37 overlapping beams) was focused

to a spot 750 µm in diameter FWHM, producing intensity up to 13108~ ×  W/cm2. The

time-averaged rms spatial variation for a single beam has been measured to be 1-2%;

hence the feedout-related evolution of perturbations was not obscured by the laser imprint

effects.

The diagnostic setup for the feedout measurements was the same as used in our

experiments on ablative Richtmyer-Meshkov instability and was described in detail in a

separate paper [8]. It is a modification of the Nike monochromatic x-ray imaging system
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based on Bragg reflection from spherically curved crystals [14]. The He-like resonance

line (hν  = 1.86 keV), selected by a spherically curved quartz crystal from the radiation of

a silicon backlighter illuminated the main target for about 5 ns. The monochromatic

image of the target was projected on the entrance slit of the x-ray streak camera with a

positioning accuracy that corresponds to 30 µm on the target. The streak records were

taken with a time resolution of 170 ps. As in Ref. 8, spatial resolution was provided in

one relevant direction, along the wave vector of the sine-wave ripple on the rear surface

of the target. The large flat top (400 µm) of the laser focal spot and a large field of view

(500 µm) give us more ripples available for Fourier transform analysis, thus ensuring

confidence in determining mode amplitude. The Fourier amplitudes presented below are

MTF-corrected, the MTF at 30=λ  µm and 45 µm being 0.4 and 0.7, respectively. An

experimental error bar for the mode amplitude measurement does not exceed ± 1µm in

most cases [8].

We used 40 µm to 60 µm thick CH targets rippled on the rear side. The initial

ripple amplitudes and wavelengths were approximately either 1 µm and 30 µm, or 1.5 µm

and 45 µm. These perturbation amplitudes were too high for observing linear RT growth:

with 42.00 =ka  we were close to the non-linear stage from the start. In the rippled

rarefaction wave, however, perturbations of all wavelengths oscillate rather than grow

exponentially. In our simulations, we verified that the higher harmonics, being initially

small, remain small until the onset of the exponential RT growth.

Compared to Richtmyer-Meshkov and RT growth, feedout-related oscillations are

much more difficult to observe since the areal mass amplitude is smaller than the initial

one during most of the oscillation. However, as Fig. 2 demonstrates, we were still able to
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observe this oscillation thanks to the high contrast capability of our diagnostics. Shown is

a streak record (left) taken with a target thickness 60 µm, λ = 46 µm, peak laser intensity

5 ×1013 W/cm2, and its lineouts at three different times (right). The two phase reversals

illustrated by the lineouts are clearly seen on the original streak record. The light and dark

stripes that correspond to low and high areal mass, respectively, are seen at early time,

and then disappear, as if at about t = 2 ns they were smeared out in a horizontal band ~0.5

ns wide. Then the stripes reappear, but the light and dark ones change places, indicating a

180° phase reversal, which occurs about the time predicted by Eq. (1) for 5.1=st  ns:

here, 46.01 =t  ns. Shortly after this, the RT growth in the positive direction (at the initial

phase) begins, and the phase of areal mass modulation is reversed again, this time at

about 4 ns. The growth is also clearly visible: dark and light stripes, representing peaks

and valleys of areal mass distribution, respectively, become more pronounced at late

time.

Figure 3 compares the oscillations observed in a 40 µm and a 60 µm targets with

the same perturbation amplitude a0 = 1.5 µm, wavelength λ  = 45 µm, irradiated at the

same peak intensity 5_1013 W/cm2.  The respective shock waves and reflected rarefaction

waves have about the same velocities in both cases. The rarefaction transit time is 50%

greater for a 60 µm target. In both cases, the lateral mass flow in a rippled rarefaction

wave leads to a phase reversal of mass perturbation pattern with respect to the original

mass distribution. The maximum amplitude of the out-of-phase mass perturbation

generated by a rippled rarefaction wave grows as the normalized transit time

)/(2 0 RLtkas λπ= [3] is increased between 1.5 and 4.3, see Fig. 1.  In contrast, the leading

edge of the rarefaction wave preserves the initial perturbation phase and upon rarefaction
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breakout on the front, the RT growth is in phase with the initial perturbation. As the RT

instability develops, the amplitude of mass variation first decreases, then its phase is

reversed again, and it continues growing until the laser pulse ends and the target

decompresses. The RT growth is seen to start earlier for the thinner target, as it should be.

Figure 4 shows the data obtained for a 60 µm thick target with the same

perturbation amplitude a0 = 1.5 µm, wavelength λ  = 45 µm, irradiated at the same peak

intensity 5_1013 W/cm2. Here 5.1=st  ns, 5.01 =t  ns calculated from (1) are again in

agreement with the observation. This time history of the dominant mode is compared to a

simulation performed in two dimensions (2D) using the FAST2D hydrocode developed at

the Naval Research Laboratory [15]. Qualitatively, the simulation predicts exactly what

we observe in all shots: two phase reversals, and then some RT growth. Quantitative

agreement is also quite reasonable.

In summary, we have observed for the first time a distinct half-oscillation (two

phase reversals) followed by the monotonic RT growth of areal mass variation in a

feedout geometry. The oscillation is due to the competition between the lateral mass

redistribution in a reflected rippled rarefaction wave, which reverses the phase of mass

modulation, and the RT growth that starts where the target is initially thinner and tends to

further decrease the areal mass there. The latter prevails in our experimental conditions,

as well as in those of Ref. 2, resulting in exactly two phase reversals. A challenge for a

future experiment is to observe three phase reversals, producing the RT bubbles where

the target was initially thicker (cf. Ref. 3). A challenge for a future simulation is to

achieve a better quantitative agreement with our results. Finally, a challenge for the

theory is to derive a relation between the initial rear surface ripple amplitude and the pre-
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exponential factor at the linear RT growth stage, generalizing the results of Ref. 4 for the

case when 2 or more phase reversals take place.
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Figure captions

Fig. 1. Time history of normalized mass variation in a planar target caused by a rippled

rarefaction wave and a rippled shock wave (small-amplitude theory). Initial amplitudes of

the front and rear surface ripples are the same; the time origin for the rarefaction curve is

shifted to the shock breakout at the rippled rear surface.

Fig. 2. Streak record (left) and its line-outs at three different times (right) for target

thickness 60 µm, λ  = 46 µm, and peak laser intensity 5 ×1013 W/cm2. Two phase

reversals are clearly seen on both the line-outs and the image.

Fig. 3. Peak-to-valley amplitudes of the dominant Fourier modes for 40 µm and 60µm

thick targets vs. time. 32 0 =a µm, λ  = 45 µm, peak laser intensity 5×1013 W/cm2. First

and second phase reversals are marked on both pictures. The thickness of the shaded area

corresponds to the experimental uncertainty of the mode amplitude measurement.

Fig. 4. Peak-to-valley amplitudes of the dominant Fourier modes for a 60 µm thick

targets vs. time. 32 0 =a µm, λ = 45 µm, peak laser intensity 5×1013 W/cm2. Solid line —

experiment, dotted line — simulation.



12

Fig. 1. Time history of normalized mass variation in a planar target caused by a rippled

rarefaction wave and a rippled shock wave (small-amplitude theory). Initial amplitudes of

the front and rear surface ripples are the same; the time origin for the rarefaction curve is

shifted to the shock breakout at the rippled rear surface.
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Fig. 2. Streak record (left) and its line-outs at three different times (right) for target

thickness 60 µm, λ  = 46 µm, and peak laser intensity 5 ×1013 W/cm2. Two phase

reversals are clearly seen on both the line-outs and the image.

a

b

c

space (microns)

ti
m

e 
(n

se
c)

100           200           300           400            500

5

3

2

1

4

space (microns)

in
te

n
si

ty
(c

o
u

n
ts

)

c

b

a

150                 200                  250                 300 350                 400

150                 200                  250                 300 350                 400

150                 200                  250                 300 350                 400

1000

950

900

850

1500

1400

1300

1200

1700

1600

1500

1400

a

b

c

space (microns)

ti
m

e 
(n

se
c)

100           200           300           400            500

5

3

2

1

4

space (microns)

in
te

n
si

ty
(c

o
u

n
ts

)

c

b

a

150                 200                  250                 300 350                 400

150                 200                  250                 300 350                 400

150                 200                  250                 300 350                 400

1000

950

900

850

1500

1400

1300

1200

1700

1600

1500

1400

space (microns)

in
te

n
si

ty
(c

o
u

n
ts

)

c

b

a

150                 200                  250                 300 350                 400

150                 200                  250                 300 350                 400

150                 200                  250                 300 350                 400

1000

950

900

850

1500

1400

1300

1200

1700

1600

1500

1400



14

Fig. 3. Peak-to-valley amplitudes of the dominant Fourier modes for 40 µm and 60µm

thick targets vs. time. 32 0 =a µm, λ  = 45 µm, peak laser intensity 5×1013 W/cm2. First

and second phase reversals are marked on both pictures. The thickness of the shaded area

corresponds to the experimental uncertainty of the mode amplitude measurement.
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Fig. 4. Peak-to-valley amplitudes of the dominant Fourier modes for a 60µm thick target

vs. time. 32 0 =a µm, λ  = 45 µm, peak laser intensity 5×1013 W/cm2. Solid line —

experiment, dotted line — simulation.
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